Spatiotemporal wavelet analysis for functional MRI.

نویسندگان

  • Chris Long
  • Emery N Brown
  • Dara Manoach
  • Victor Solo
چکیده

Characterizing the spatiotemporal behavior of the BOLD signal in functional Magnetic Resonance Imaging (fMRI) is a central issue in understanding brain function. While the nature of functional activation clusters is fundamentally heterogeneous, many current analysis approaches use spatially invariant models that can degrade anatomic boundaries and distort the underlying spatiotemporal signal. Furthermore, few analysis approaches use true spatiotemporal continuity in their statistical formulations. To address these issues, we present a novel spatiotemporal wavelet procedure that uses a stimulus-convolved hemodynamic signal plus correlated noise model. The wavelet fits, computed by spatially constrained maximum-likelihood estimation, provide efficient multiscale representations of heterogeneous brain structures and give well-identified, parsimonious spatial activation estimates that are modulated by the temporal fMRI dynamics. In a study of both simulated data and actual fMRI memory task experiments, our new method gave lower mean-squared error and seemed to result in more localized fMRI activation maps compared to models using standard wavelet or smoothing techniques. Our spatiotemporal wavelet framework suggests a useful tool for the analysis of fMRI studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

Spatiotemporal wavelet resampling for functional neuroimaging data.

The study of dynamic interdependences between brain regions is currently a very active research field. For any connectivity study, it is important to determine whether correlations between two selected brain regions are statistically significant or only chance effects due to non-specific correlations present throughout the data. In this report, we present a wavelet-based non-parametric techniqu...

متن کامل

Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.

PURPOSE Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2004